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Abstract Motivated by Kesten’s bridge decomposition for two-dimensional self-avoiding
walks in the upper half plane, we show that the conjectured scaling limit of the half-plane
SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition. This
continuum decomposition turns out to entirely be a consequence of the restriction property
of SLE(8/3), and as a result can be generalized to the wider class of restriction measures.
Specifically we show that the restriction hulls with index less than one can be decomposed
into a Poisson Point Process of irreducible bridges in a way that is similar to Itô’s excursion
decomposition of a Brownian motion according to its zeros.

Keywords Self-avoiding walk · Conformal invariance · SLE · Restriction measures ·
Poisson process · Excursion theory

1 Introduction

One of the greatest successes of the Schramm-Loewner Evolution (SLE), and the broader
study of two-dimensional conformally invariant stochastic processes that it enabled, has
been the ability to describe the scaling limits of two-dimensional lattice models that arise in
statistical mechanics. There are many known examples: SLE(2) as the scaling limit for loop
erased random walk, SLE(3) as the scaling limit of critical Ising interfaces, SLE(6) as the
limit of percolation exploration paths, etc. One of the most important open problems in the
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field is to prove that the scaling limit of the infinite self-avoiding walk in the upper half plane
H is given by SLE(8/3). It is known that if the scaling limit of half-plane SAWs exists and
is conformally invariant, then the scaling limit must be SLE(8/3). Both the existence and
conformal invariance are widely believed to be true, yet proofs remain elusive. For an acces-
sible and relatively recent source on the current status of this problem, we refer the reader
to [11]. Even without formally establishing the scaling limit result, it is often still possible to
independently check that the various well-studied properties of half-plane SAWs carry over
to the SLE(8/3) process. The main results of this paper should be seen in this context. In [6]
it is shown that half-plane SAWs admit what is called a bridge decomposition, which raised
the question of finding a similar decomposition for SLE(8/3). In this paper we will show that
an appropriately defined continuum decomposition does exist, and we will describe some of
its properties. A somewhat surprising aspect of the existence is that it depends only on the
fact that SLE(8/3) satisfies the restriction property, and not on the fine details of the process
itself. Specifically, the decomposition has no explicit reliance on the Loewner equation. Us-
ing this fact we are able to extend the continuum bridge decomposition beyond SLE(8/3)
to a wider class of random sets whose laws are given by the so-called restriction measures.
These probability measures were introduced and studied extensively in [8], and they occupy
an important position in the hierarchy of two-dimensional conformally invariant processes.
We will give a more detailed description of restriction measures in Sect. 2, but we empha-
size that the reader who is uninterested in general restriction measures will lose nothing by
focusing on SLE(8/3) as the canonical one.

1.1 Motivation: Bridge Decomposition of SAWs

To motivate the continuum bridge decomposition, we first describe the corresponding de-
composition for half-plane SAWs. This is thoroughly described in [14], along with many
other interesting properties of the self-avoiding walk. In the discrete setting we will work
exclusively on the lattice Z + iZ. An N -step self-avoiding walk ω on Z + iZ is a sequence
of lattice sites [ω(0),ω(1), . . . ,ω(N)] satisfying |ω(j + 1) − ω(j)| = 1 and ω(i) �= ω(j)

for i �= j . We will write |ω| = N to denote the length of ω. Given walks ω and ω′ of length
N and M (respectively), the concatenation of ω and ω′ is defined by

ω ⊕ ω′ = [ω(0), . . . ,ω(N),ω′(1) + ω(N), . . . ,ω′(M) + ω(N)].
Letting cN denote the number of self-avoiding walks of length N , it is easy to see that

cN+M ≤ cNcM

since any SAW of length N + M can always be written as the concatenation of two SAWs
of length N and M . A standard submultiplicativity argument then proves the existence of a
constant μ > 0 such that

lim
N→∞

log cN

N
= logμ, (1)

or cN ≈ μN in the common shorthand. The exact value of μ is not known, nor is it expected
to be any special value, but numerically it has been shown that μ is close to 2.638 (see [14,
Section 1.2]).

We will mostly deal with half-plane SAWs rooted at the origin, i.e. self-avoiding paths
ω such that ω(0) = 0 and Imω(j) > 0 for all j > 0. Let H denote the set of all such walks.
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The most commonly used probability measure on H, and the one that we will consider
throughout, is the weak limit of the uniform measure on {ω ∈ H : |ω| = N}, as N → ∞.
This limit is proven to exist in [14], and again in the appendix of [11]. The key element of
both proofs is, in fact, the bridge decomposition of the walks in H, the study of which was
initiated by Kesten [6, 7] and goes as follows. A bridge of length N is a self-avoiding walk
ω such that |ω| = N and

Imω(0) < Imω(j) ≤ Imω(N), 1 ≤ j ≤ N.

Note that the concatenation of any two bridges is still a bridge, but that not every bridge
is the concatenation of two shorter ones. A bridge with the latter property is said to be
irreducible, and such bridges are the basic building blocks of walks in H. Indeed, given
any ω ∈ H, one performs a bridge decomposition of ω by searching for the smallest time j

such that Imω(k) ≤ Imω(j) for k ≤ j and Imω(k) > Imω(j) for k > j . By the minimality
of j , the subpath [w(0),w(1), . . . ,w(j)] is an irreducible bridge, and the shifted subpath
[0,w(j + 1) − w(j), . . . ,w(k) − w(j), . . .] for k ≥ j is a new element of H on which we
may repeat this procedure. Iterating in this fashion produces the bridge decomposition of ω

into a sequence of irreducible bridges, and the decomposition is clearly unique.1

Much of the study of the infinite self-avoiding walk in the upper half plane therefore
reduces to the study of irreducible bridges. Let B be the set of all irreducible bridges rooted
at the origin, and λN be the number of length N elements of B. Using some clever tricks
involving generating functions, Kesten was able to prove what is now called Kesten’s rela-
tion:

∑

N≥1

λNμ−N =
∑

ω∈B

μ−|ω| = 1, (2)

for the same μ as in (1) (for proofs see [6] or [14, Section 4.3]). Kesten’s relation shows that
P(ω) := μ−|ω| is a probability measure on B, and by concatenating together an independent
sequence of irreducible bridges each sampled from P, a probability measure is induced
on H. In [14] and [11], the latter measure is shown to be the only possible candidate for
the weak limit of the uniform measure on {ω ∈ H : |ω| = N}, and therefore the question of
existence of this weak limit is immediately settled.

The bridge decomposition shows that infinite half-plane SAWs have a renewal structure
to them. At the end of each irreducible bridge the future path of the walk lies entirely in
the half-plane above the horizontal line where the bridge ended. The future path is again a
concatenation of a sequence of irreducible bridges, so that its law is the same as the law of
the original path and the future path is independent of the past. In this sense the walk renews
itself whenever it is at the end of an irreducible bridge, and it is appropriate to call such
times renewal times. Note that the renewal times are functions of the entire half-plane SAW,
since the algorithm for the bridge decomposition depends upon knowing the entire walk.

1There is a minor technicality to point out here: if the walk oscillates infinitely often in the vertical direction
without approaching some limit (including infinity) the decomposition algorithm will terminate after finitely
many iterations and the remaining part of the walk will not be a bridge. However, we will see in the next para-
graph that this is a probability zero event under the standard measure on H, and that the vertical component
of the SAW always goes to infinity with probability one.
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Fig. 1 A sample SLE(8/3)
curve in the lighter color, with
the bridge points superimposed
in black. The bridge heights are
plotted on the vertical axis. The
SLE(8/3) curve is generated by
Tom Kennedy’s algorithm and
freely available graphics
program; see [5]

1.2 Statement of Results: The Continuum Bridge Decomposition

In the continuum we will show that an analogue of bridge times exists for the so-called re-
striction hulls in H, and that these times are also renewal times. Using this renewal structure,
we proceed to decompose the restriction hulls into countably many continuum irreducible
bridges. This continuum decomposition most closely resembles the discrete one in the case
of SLE(8/3), but we will see that it also holds for more general restriction hulls with para-
meter α < 1. We will give a more in-depth description of the restriction hulls in Sect. 2, but
provide a brief summary here.

Roughly speaking, a restriction hull is a stochastic process taking values in the space
of unbounded hulls in H. An unbounded hull is a closed, connected subset K ⊂ H such
that H\K consists of exactly two connected components. The unbounded hulls that we will
consider are closed, connected subsets of H that connect 0 and ∞, and intersect R only at
zero; moreover it will be possible to time parameterize them into a growing family (Kt , t ≥
0) of hulls (closed, connected subsets A of H such that H\A is simply connected with
exactly one connected component) with K∞ = K . This time parameterization is provided by
the well-known construction of restriction hulls that was originally laid out in [8] and [13].
Those papers show that attaching the filled-in loops from a realization of the Brownian Loop
Soup to an independent SLE curve induces a restriction law on unbounded hulls in H. By
changing the κ parameter for the SLE and the intensity parameter for the loop soup (in a
specific way) an entire family Pα of restriction measures on unbounded hulls is created.
Here α is a real parameter with α ≥ 5/8.

The definition of a continuum bridge is motivated by the algorithm for decomposing
half-plane SAWs into irreducible bridges, which essentially searches for horizontal lines
that separate the future path from the past.

Definition 1 Let K be a hull (unbounded or not).

– Call L > 0 a bridge height for K if the horizontal line y = L intersects K at exactly one
point, i.e. if K ∩ {y = L} is a singleton.

– If z ∈ H is such a singleton then we call it a bridge point. Let C be the set of bridge points
of K , and let D be the set of bridge heights (note that D = {Im z : z ∈ C}).
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– Let G be the set of bridge times at which the hull is at a bridge point, which can be written
as G := {t ≥ 0 : Kt\Kt− ∩ C �= ∅}.

– A continuum bridge is a segment of the bridge between two bridge times, i.e. if s, t ∈ G

with s < t then the hull Kt−\Ks− is a bridge. A continuum bridge is said to be irreducible
if it contains no bridge points (other than the starting and ending points).

Note that bridge heights, points and times are all functions of the entire hull K . A subset
of K is, by itself, not enough to determine C,D or G. At any fixed time t ≥ 0 it is possible
to determine what are the bridge points of the hull Kt , but not which of those are bridge
points of the entire hull K∞ = K , since some of the bridge points of Kt may ultimately be
destroyed by the future hull as it grows.

There are two main steps behind the continuum bridge decomposition. The first is to
show that bridge points actually exist for hulls with α < 1, which is not a priori clear. We do
this by calculating the almost sure Hausdorff dimensions of C and D and showing that they
are strictly larger than zero (and in fact the same). Specifically we will show the following:

Theorem 1 Suppose K has the law of Pα , then

1. the laws of C and D are scale invariant (i.e. rC ≡ C and rD ≡ D for all r > 0),
2. C and D are almost surely perfect (i.e. closed and without isolated points),
3. the Hausdorff dimensions of both C and D are constant, Pα − a.s.,
4. dimH C = dimH D = max(2 − 2α,0), Pα − a.s.,
5. C and D are empty, Pα − a.s. if and only if α ≥ 1.

The proof of Theorem 1 is taken up in Sect. 3, but we will mention here that the key
element is the restriction formula:

Pα(K ∩ A = ∅) = φ′
A(0)α, (3)

where A is a hull that does not contain zero, and φA is a conformal map from H\A to H

such that φA(z) ∼ z as z → ∞. Most of the proof of Theorem 1 is based on an analysis of
φ′

A(0) for a specific choice of the hull A. The proof of part (5) builds upon the α = 1 case,
which is related to Brownian excursions, and uses the fact that the vertical component of a
Brownian excursion is a Bessel-3 process.

Given that bridge points exist for α < 1, the next step is to prove an analogue of the
renewal theory for half-plane SAWs. In Sect. 4 we show that the restriction hulls have an
extended Markov property with respect to the information gained by observing the hull as it
grows along with the global bridge points of K as they appear, and as a corollary we show
that the bridge times are actually renewal times for the hull process. In Sect. 5 we will use
this Markov property and Theorem 1 to show the existence of a “local time” for the time
spent by a restriction hull at its bridge points, and the local time can then be used to prove:

Theorem 2 There exists a local time λ supported on bridge heights such that θλ(Kλ \ Kλ−)

is a Poisson Point Process, where θt is an operator that shifts back to the origin the part of the
hull that comes after time t . Moreover, the local time is the inverse of a stable subordinator
of index 2 − 2α.

The general theory of Poisson Point Processes then implies the existence of a sigma-
finite measure να on continuum irreducible bridges that is the analogue of the measure P on
irreducible bridges for half-plane SAWs. In Sect. 5 we mention some basic properties of this
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measure. We also show that the Poisson Point Process can be used to recover the restriction
hull, so that as in the discrete case, the irreducible bridges are the building blocks of the
restriction hull processes.

We should mention that most of these ideas are similar in spirit to the excursion decompo-
sition of a one-dimensional Brownian motion according to its zeros, as was first described
by Itô. In recent years, similar two-dimensional conformally invariant decompositions of
this type have also been considered by Dubédat [4] and Virág [17]. They provide decompo-
sitions of unbounded hulls arising from certain variants of SLE(κ,ρ) and Brownian excur-
sions, respectively, although their decompositions are at cutpoints rather than bridge points
(i.e. points that, if removed from the set, would disconnect it into two pieces). Clearly bridge
points are cutpoints but not vice versa, and there does not appear to be any direct relationship
between our decomposition and theirs. In one sense their decompositions are more involved
than ours, since their hulls refresh at cutpoints only after conformally mapping away the
past, whereas our hulls refresh at bridge points after a simple shift of the future hull back
to the origin. This difference is mostly cosmetic, however, and in spirit all these decomposi-
tions are quite similar.

The paper is organized as follows: in Sect. 2 we give the necessary background on re-
striction measures and introduce some notation. Section 3 is devoted to proving the existence
of bridge points and Theorem 1, while Sect. 4 proves an extended Markov property and a
refreshing property of the restriction hulls with respect to the filtration generated by bridge
points as they appear. Section 5 then uses these results to prove the decomposition of The-
orem 2. Finally, in Sect. 6 we present a series of open questions that were raised by our
work.

2 Restriction Measures

In this section we review the basic construction and properties of restriction measures. We
include no proofs but give references to the appropriate sources. For thorough overviews
of the subject see [8, 10, 13]. The reader interested only in the bridge decomposition for
SLE(8/3), and not for general restriction measures, can entirely ignore the presence of the
loops in this section.

To begin with, consider a simply connected domain D in the complex plane C (other than
the whole plane itself) and two boundary points z,w ∈ ∂D. A chordal restriction measure
corresponding to the triple (D, z,w) is a probability measure P

(D,z,w) on closed subsets
of D. The measures are supported on closed, connected subsets of K ⊂ D such that K ∩
∂D = {z,w} and D\K has exactly two components (for the triple (H,0,∞) we call these
sets unbounded hulls, for obvious reasons). The restriction measures satisfy the following
properties, which essentially characterize them uniquely:

– Restriction property: for all simply connected subsets D′ of D such that D\D′ is also
simply connected and bounded away from z and w, the law of P

(D,z,w), conditioned on
K ⊂ D′, is P

(D′,z,w),
– Conformal invariance: if f : D → D′ is conformal and K has P

(D,z,w) as its law, then
f (K) is distributed according to P

(f (D),f (z),f (w)).

It turns out that for a given triple (D, z,w) there is only a one-parameter family of such
laws, indexed by a real number α. We denote the law by P

(D,z,w)
α , and due to the conformal

invariance property it is enough to define the restriction measure for a single triple (D, z,w).
The canonical choice is (H,0,∞), and for shorthand we will write Pα for P

(H,0,∞)
α . In [8]
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it is shown that these restriction measures exist only if the parameter α satisfies α ≥ 5/8,
and that the measure is supported on simple curves only if α = 5/8. In the latter case the
restriction measure is simply the SLE(8/3) law from z to w in D. For α = 1 it turns out that
the restriction measure coincides with the law of filled-in Brownian excursions in D from z

to w.
For all α ≥ 5/8, one of the fundamental constructions of [8] is that restriction measures

can be realized by adding to an SLE(κ) curve the filled-in loops that it intersects from an
independent realization of the Brownian loop soup, for an appropriate choice of κ for the
curve and intensity parameter λ for the loop soup. Let

κ = 6

2α + 1
, λ = (8 − 3κ)α,

and let γ be a chordal SLE(κ) and Lλ be an independent realization of the Brownian
loop soup (in H) with intensity parameter λ. The individual loops in Lλ will be generi-
cally denoted by η, they can be thought of as continuous curves η : [0, tη] → H such that
η(0) = η(tη). Throughout we will use γ and η to denote the curves as well as their traces,
i.e. γ [0,∞) and η[0, tη], respectively. It will be clear from the context which we are refer-
ring to. Let K be the hull generated by the union of γ and all the (filled-in) η ∈ Lλ such that
η ∩ γ �= ∅. Then [8] (along with [13]) proves that K is distributed according to Pα .

This construction allows us to identify restriction hulls with pairs (γ, L), where γ :
[0, tγ ] → C is a continuous, simple curve and L is a set of loops. Furthermore, the curve
plus loops structure gives a clean way of time parameterizing the hulls. Letting K be a
restriction hull, which we identify with (γ, L), we define Kt to be the hull generated by
γ [0, t] plus the union of all filled-in loops η ∈ Lλ such that η ∩ γ [0, t] �= ∅. Then (Kt )t≥0

is a growing family of hulls that increases to K∞ = K . It is important for us to have such a
time parameterization so that we may properly describe the renewal theory for the restric-
tion hulls, but the particular time parameterization is not especially important since we are
mostly interested in the restriction hull as a topological object. We remark that this growing
family is not continuous with respect to the time parametrization, since loops are added “all
at once”, but again it does not really matter for our purposes (nevertheless, notice that the
parameterization is right continuous). The only issue to point out is that the bridge points of
a restriction hull will always be a subset of the underlying (simple) curve γ , and therefore
to each bridge point there is a corresponding unique bridge time. Hence the set of bridge
times G is a well defined object.

The curve-plus-loops structure also makes it easy to define various operations on hulls.
Given two pairs (γ, L) and (γ ∗, L∗) with γ (0) = γ ∗(0) = 0, their concatenation is defined
by

(γ, L) ⊕ (γ ∗, L∗) = (γ ⊕ γ ∗, L ∪ (γ (tγ ) + L∗)),

where γ ⊕ γ ∗ is the usual concatenation of curves given by

(γ ⊕ γ ∗)(t) =
{

γ (t), 0 ≤ t ≤ tγ

γ ∗(t − tγ ) + γ (tγ ), tγ ≤ t ≤ tγ + tγ ∗ .

We also define a time shift for the hulls. For t ≤ s ≤ tγ , define the curve γ t,s by γ t,s(t ′) :=
γ (t + t ′) for 0 ≤ t ′ ≤ s − t , and let

Lt,s := {η ∈ L : η ∩ γ t,s �= ∅, η ∩ γ [0, t] = ∅}.
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Then we define Λt,sK := (γ t,s , Lt,s ), which is the future hull between times t and s, and
θt,sK := Λt,sK − γ (t), which shifts the future hull to start at the origin. If s = tγ , which
usually for us means s = ∞, we write Λt and θt for these operators. In the case that K is
an unbounded hull in H and t is a bridge time for K , it is easy to see that θtK is also an
unbounded hull in H. At non-bridge times θtK does not remain in H.

Imagine a walker moving along the hull that has discovered Kt at time t . The information
that is progressively revealed to the walker is encapsulated by the filtration

Ft := σ(Ks;0 ≤ s ≤ t).

With respect to this filtration, the following Domain Markov property is true:

The conditional law of ΛtK, given Ft , is P
(H\γ [0,t],γ (t),∞)
α . (4)

This is similar to the Domain Markov property for regular SLE, where the future curve is an
independent SLE(κ) curve from γ (t) to ∞ in H\γ [0, t], except that in the case of restriction
measures one also attaches to the curve the filled-in loops of an independent realization of
the Brownian loop soup in the domain H\γ [0, t]. Note, however, that both the future curve
and loops are sampled from the laws corresponding to the domains H\γ [0, t], not the laws
corresponding to H\Kt . In short, the future curve and future loops are allowed to intersect
the past loops but not the past curve γ [0, t].

For the domain (H,0,∞) recall that the restriction measures satisfy the restriction for-
mula (3):

Pα(K ∩ A = ∅) = φ′
A(0)α,

where A is a hull in H that is a positive distance from zero, and φA is a conformal map from
H\A onto H satisfying φA(z) ∼ z as z → ∞. In fact, specifying the above probabilities for
a sufficiently large class of hulls A (so-called smooth hulls) uniquely determines Pα , see [8]
for a proof of this fact. For general triples (D, z,w), the restriction formula is

P
(D,z,w)
α (K ∩ A = ∅) = φ′

f (A)(0)α, (5)

where A is a hull in D not containing z, and f is a conformal map from D onto H that sends
z to 0 and w to ∞.

The restriction formula will be heavily used throughout this paper. For a given hull A

there are various techniques from both complex analysis and probability theory that can be
used to compute φ′

A(0). We will exclusively use probabilistic techniques involving Brownian
motion; these are described in the next section.

3 Bridge Lines and Bridge Points

The main focus of this section is proving Theorem 1. Specifically, we establish the existence
of bridge points and lines for restriction hulls with α < 1, and also prove the non-existence
for α ≥ 1.

First observe that part (1) of Theorem 1 is trivial. The scale invariance of C and D follows
immediately from the scale invariance of the restriction hulls (which itself follows from the
scale invariance of SLE and of the loop soup). To prove part (2), first recall that bridge points
of a restriction hull are always on the SLE curve itself and never on a loop, and that there is
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always a unique bridge time corresponding to every bridge point. We refer to the end of the
section for the proof.

The most involved proofs are for calculating the Hausdorff dimensions of C and D. The
computation of the Hausdorff dimensions in Theorem 1 follows standard “one-point” and
“two-point” arguments, as in, for example, [1, 2, 9, 16]. The idea behind this argument is
to approximate C and D by “thickened” sets Cε and Dε , and then obtain estimates on the
probability that a given set of points belongs to the thickened sets. A specific bound on the
probability that one point belongs to the thickened set gives an upper bound on the Hausdorff
dimension, and a similar bound on the probability that two points are in the thickened sets,
together with the order of magnitude of the one-point estimate, gives a lower bound on the
dimension. We recall the result that we will use in the remainder; throughout this paper we
use the notation f (ε) � g(ε) to indicate that there exists constants C1 and C2 independent
of ε such that C1g(ε) ≤ f (ε) ≤ C2g(ε), for all ε sufficiently small.

Proposition 1 Let H be a random subset of C and Hε be the set of points at distance less
than ε from H . Suppose that the two following conditions are fulfilled for some s ≥ 0 and
constant c > 0:

– for all z ∈ H, P(z ∈ Hε) � εs ,
– for all distinct w,z ∈ H, P(w, z ∈ Hε) ≤ cεs ∧ c(ε2s/|w − z|s).
Then dimHH ≤ 2 − s with probability one, and with some strictly positive probability we
also have dimH H ≥ 2 − s. If H is a random subset of R then the same conclusion holds
with 2 − s replaced by 1 − s.

Note that Proposition 1 by itself is not enough to conclude that the Hausdorff dimension
of H is a constant, since the lower bound only holds on some event of positive probability.
In our situation we are able to conclude that the Hausdorff dimension of C and D is constant
by using a 0-1 law. The argument that follows uses the Blumenthal 0-1 Law and is modified
from [9].

Proof (Proof of Theorem 1, part (3)) We will prove the result for C, a similar argument
holds for D. For 0 ≤ t ≤ s, define Ct(s) := {bridge points of Ks} ∩Kt . For a fixed d > 0, let
Wt(s) := {dimHCt(s) ≥ d}. It is enough to show that Pα(W∞(∞)) = 0 or 1.

First note that for fixed s, both the sets Ct(s) and Wt(s) are increasing in t , while for
fixed t they are decreasing in s. Defining

Vs :=
∞⋂

n=1

W 1
n
(s) = {dimH Ct(s) ≥ d ∀0 < t ≤ s},

it follows that Vs is also decreasing in s. For each element of the event Vs\V∞, there exists
a t0 such that 0 < t0 ≤ s and for all 0 < t ≤ t0,

dimH Ct(∞) < d ≤ dimH Ct(s).

But this can only happen if for every 0 < t ≤ t0, the future hull ΛsK destroys bridge points
of Ks that are in Kt , and since this happens for every 0 < t ≤ t0 and Kt → {0} as t → 0,
this forces that the future hull comes arbitrarily close to the real axis. But this is clearly an
event of measure zero. Hence for every s > 0, Pα(Vs\V∞) = 0, from which it immediately
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follows that

Pα

( ∞⋂

n=1

V 1
n

)
= Pα(V∞).

However, the intersection of the V1/n is F0+-measurable, and in the case of SLE(8/3) it
follows that P5/8(V∞) = 0 or 1 by the Blumenthal 0-1 Law, since the corresponding measure
P5/8 is a pushforward of Wiener measure through the Loewner equation. For general α >

5/8, the same type of Blumenthal 0-1 Law holds via the usual argument. Indeed, the Domain
Markov property implies that φKt (ΛtK) is a restriction hull that is independent of Ft , hence
for A ∈ F0+ and t > 0 and any bounded, continuous function f on hulls we have

E[f (φKt (ΛtK))1A] = E[f (φKt (ΛtK))]Pα(A).

Taking a limit of both sides as t ↓ 0 and using the fact that f is continuous and φKt goes
continuously to the identity we get that

E[f (K)1A] = E[f (K)]Pα(A),

which shows that A is independent of all elements of F∞, and therefore of itself. �

We now use Proposition 1 to prove part (4) of Theorem 1. We use the following events
to define our thickened sets.

Definition 2 For z ∈ H and ε > 0, let I (z, ε) be the horizontal line y = Im z with the gap of
width 2ε centered around z removed. That is

I (z, ε) := {w ∈ H : Imw = Im z, |Re(w − z)| ≥ ε}.
Define the sets Cε and Dε by

Cε := {z ∈ H : I (z, ε) ∩ K = ∅},
Dε := {L > 0 : I (nε + iL, ε) ∩ K = ∅ for some n ∈ Z}.

Lemma 1 With the definitions above, the following is true Pα-a.s.:

C =
⋂

ε>0

Cε, D =
⋂

ε>0

Dε.

Proof Recall that C consists of z ∈ H for which K ∩ {y = Im z} = {z}. Hence if z ∈ C then
z ∈ Cε for all ε > 0. To prove the converse, note that if z ∈ Cε for every ε > 0 then z is the
only possible element in the set K ∩{y = Im z}. But the latter set is always non-empty, since
restriction hulls are connected and their vertical component goes from zero to infinity (Pα-
a.s.), and therefore with Pα-probability 1 the set K ∩ {y = L} is non-empty for all L > 0.
The proof for D is exactly the same. �

The restriction formula makes it easy to compute the probability that a point z ∈ H is
in Cε . Indeed, by formula (3) we have

Pα(z ∈ Cε) = Pα(I (z, ε) ∩ K = ∅) = φ′
I (z,ε)(0)α,
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Fig. 2 The dotted point is z and
the two horizontal lines on either
side form the set I (z, ε). This
figure depicts the event that an
SLE(8/3) avoids the hull I (z, ε)

where φI(z,ε) is a conformal map from H\I (z, ε) onto H such that φI(z,ε)(w) ∼ w as w →
∞. Similarly,

Pα(w, z ∈ Cε) = φ′
I (w,ε)∪I (z,ε)(0)α.

By Proposition 1, the Hausdorff computation for C and D therefore comes down to an
estimate of the derivative of these conformal maps at zero. We list three possible methods
for these estimates. One deals only with conformal maps and is entirely analytic. The others
use probabilistic techniques. We recall the analytic method but do not enter into details.

Analytic method: While it is not possible to write down φI(z,ε) explicitly, one can write
down the general form of its inverse. Let

fz,ε(w) := λw + Im z

π
(log(w − a) − log(w − b) + πi),

where the imaginary part of the logarithm is zero along the positive real axis and π on the
negative real axis. For appropriate choices of real constants λ,a, and b (with a < b, λ > 0),
fz,ε maps H onto H\I (z, ε). These constants implicitly depend on z and ε, although it is
difficult to give closed-form expressions for them. Close analysis of the asymptotic behavior
of λ,a, and b could be used to get estimates on φ′

I (z,ε)(0) as ε ↓ 0, but we will mostly avoid
this strategy. We will, however, mention that a and b are determined mostly by z, while λ is
proportional to ε−2.

Brownian excursion method: The first probabilistic method uses a well-known formula,
due to Bálint Virág [17], for Brownian excursions in the upper half plane. Recall that a
Brownian excursion in H can be thought of as a Brownian motion that is started at zero
and conditioned to have a positive imaginary part at all later times. Such excursions can
be realized by a random path whose horizontal component is a one-dimensional Brownian
motion and whose vertical component is an independent Bessel-3 process.

Lemma 2 ([17]) Let A be a compact hull in the upper half plane such that H\A is simply
connected and dist(0,A) > 0, and φA be a conformal map from H\A into H such that
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φA(0) = 0 and φA(z) ∼ z as z → ∞. If BE denotes the path of a Brownian excursion in H

from 0 to ∞, then

φ′
A(0) = P(BE does not intersect A).

In particular, this lemma shows that the filling in of a Brownian excursion has the law of
a restriction measure with index 1. It can also be used to get the estimates of Proposition 1,
but we prefer the following method that produces asymptotic results (even if they are not
necessary in our setting).

Brownian motion method: Instead of using Brownian excursions to compute φ′
A(0), one

can use Brownian motion directly. Oftentimes this is easier as it doesn’t require dealing with
the conditioning. In an appropriate sense, φ′

A(0) is the exit density at zero (with respect to
Lebesgue measure) of a Brownian motion in H\A, starting from ∞. This is also called the
excursion Poisson kernel as seen from ∞. In what follows we let B be a complex Brownian
motion.

Definition 3 Given a simply connected domain D with z ∈ D, w ∈ ∂D, let HD(z,w) denote
the Poisson kernel. In the case D = H\A, we will often be interested in the “Poisson kernel
as seen from infinity”, for which we introduce the notation

HH\A(∞,w) := lim
L↑∞

LHH\A(iL,w).

The following estimates will be useful when using Lemma 3 to estimate φ′
A(0). For

x > 0, HH(z, x) = 1
π

Im(z)/|z − x|2 and consequently HH(∞, x) = 1
π

. Recall that under a
conformal map f : D → D′, HD(z,w) changes according to the scaling rule HD(z,w) =
|f ′(w)|Hf (D)(f (z), f (w)). In particular, we have the scaling rule HH\A(∞,w) =
HH\rA(∞, rw).

The next lemma outlines how to use Brownian motion directly to estimate φ′
A(0). The

method of proof is virtually identical to the one for Lemma 2, so we refer the reader to [17]
for details.

Lemma 3 For a complex Brownian motion and a compact hull A in the upper half-plane
such that H\A is simply connected and dist(0,A) > 0,

φ′
A(0) = HH\A(∞,0).

The computation of φ′
I (z,ε)(0) is thus reduced to some estimates on the exit density of a

Brownian motion in the domain H\I (z, ε). In order to simplify the computations, we first
estimate exit densities for an intermediate set Sε .

Lemma 4 Let Sε = R × [0,2i]\I (i, ε). Then for x ∈ R and λ ∈ [−1,1],

HSε (λε + i, x) ∼ π
√

1 − λ2

8 cosh2(πx/2)
ε (6)

as ε ↓ 0, where “∼” means that the ratio of the two terms converges to 1 uniformly with
respect to x and λ. In particular, the probability that the Brownian motion started at i

exits Sε on R is of order ε.
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Proof Let zε = λε + i. In this case, it is easy to find an explicit conformal map from Sε onto
H. A simple one is given by

fε(z) =
(

eπz + eπε

eπz + e−πε

)1/2

.

By the scaling rule for the Poisson kernel

HSε (zε, x) = |f ′
ε (x)|HH(fε(zε), fε(x)) = |f ′

ε (x)|
π

Im(fε(zε))

|fε(zε) − fε(x)|2 .

It is straightforward to verify that

fε(x) ∼ 1,

as ε ↓ 0, and

|f ′
ε (x)| = 1

2fε(x)

2πeπx sinh(πε)

(eπx + e−πε)2

∼ π2ε

4 cosh2(πx/2)
.

Similarly

fε(zε) =
(

eπε − eπλε

e−πε − eπλε

)1/2

∼
(

1 − λ

−1 − λ

)1/2

= i

(
1 − λ

1 + λ

)1/2

.

Assembling the pieces proves (6), and then integrating (6) over x proves the last statement. �

Lemma 5 Let x ∈ R and λ ∈ [−1,1]. Then

HH\I (i,ε)(λε + i, x) ∼ HSε (λε + i, x)

as ε ↓ 0.

Proof If a Brownian motion started at λε + i exits Sε at x, then it also exits H\I (i, ε) at x.
Consequently, the Poisson kernel on the left hand side is bigger than the one on the right.
They are not the same because the Brownian motion in H\I (i, ε) can hit the line y = 2i

before hitting zero, which the Brownian motion in Sε is not allowed to do. Asymptotically
this event contributes nothing; indeed there is only an O(ε) chance that the Brownian motion
even makes it up to y = 2i, and then another O(ε) chance that it passes back through the
gap. Overall this makes the event of order ε2 (uniformly in x and λ), which, by Lemma 4,
is negligible compared to HSε (λε + i, x). �
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Proposition 2 For z = y(x + i) ∈ H,

φ′
I (z,ε)(0) ∼ U(z)ε2

as ε ↓ 0, where

U(y(x + i)) = π

16y2 cosh2(πx/2)
.

Proof It suffices to prove the result in the case z = x + i, for the general form use the
scaling rule. We use Brownian motion coming down from infinity as in Lemma 3. In order
to reach 0, the Brownian motion coming down from infinity must first pass through the gap
of width 2ε centered at z, and then from the gap it must transition to zero while avoiding
I (z, ε). The two events are independent by the Strong Markov property, and each one is
O(ε). More precisely, by Lemmas 4 and 5,

φ′
I (z,ε)(0) = HH\I (x+i,ε)(∞,0)

=
∫

[−ε,ε]
HH(∞, x + y)HH\I (x+i,ε)(x + y + i,0) dy

=
∫ ε

−ε

1

π
HH\I (i,ε)(y + i,−x)dy

= ε

π

∫ 1

−1
HH\I (i,ε)(λε + i,−x)dλ

∼ ε2

8 cosh2(πx/2)

∫ 1

−1

√
1 − λ2 dλ. �

From Proposition 2 and the restriction formula, it is easy to derive the probability that a
bridge point is within distance ε of a given point z decays like ε2α . From this the first part of
Proposition 1 follows easily, but we need a last proposition in order to derive the two point
estimate.

Proposition 3 Let z,w ∈ H, with Im(z) > Im(w), and εz, εw > 0. Let A = I (z, εz) ∪
I (w, εw). Then

φ′
A(0) � U(z − w)U(w)ε2

z ε
2
w,

as εz, εw ↓ 0.

Proof The argument is virtually the same as for the one-point estimate in Proposition 2, the
only difference being that the Brownian motion, after passing through the first gap at z then
has to pass through a second gap at w. The probability of the latter event can be estimated
using Proposition 2; indeed, after temporarily shifting w to zero, there is a U(z − w)ε2

z εw

chance that the Brownian motion hits in an εw neighborhood of w (and therefore also the
second gap). With some positive probability it hits in the middle of the second gap, where the
probability of moving to zero is, up to a constant, given by U(w)εw . These two probabilities
multiply since, by the Strong Markov property, the path before the second gap is independent
of the path after the second gap. �
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Remark 1 By carefully decomposing the path according to the points it passes through in
the gaps and then integrating, the statement of Proposition 3 could be strengthened to an
asymptotic result rather than just up to constants. For our purposes, however, this is not
required.

Proof (Proof of Theorem 1, part (4)) Propositions 2 and 3 combine with Proposition 1 to
prove the result for C.

For D, the key observation is that if two gaps on a horizontal line do not overlap, then the
curve can only avoid the line by going through one of them. Consequently, for n �= m, the
events I (nε + iL, ε/2) ∩ K = ∅ and I (mε + iL, ε/2) ∩ K = ∅ are disjoint, and therefore

Pα(L ∈ Dε) = Pα

(⋃

n∈Z

{I (nε + iL, ε/2) ∩ K = ∅}
)

=
∑

n∈Z

Pα(I (nε + iL, ε/2) ∩ K = ∅)

∼ 1

L2α

∑

n∈Z

U

(
nε

L
+ i

)α(
ε2α

4α

)

∼ ε2α−1

4αL2α−1

∫

R

U(x + iL)α dx

∼ παε2α−1

32αL2α−1

∫

R

cosh−2α(πx/2) dx.

The transition from sum to integral is a Riemann sum approximation. By 2α > 1, the integral
is a finite constant depending only on α. This gives the one-point estimate for D.

Similarly, for 0 < L < L′,

Pα(L,L′ ∈ Dε) = Pα

( ⋃

m,n∈Z

{nε + iL,mε + iL′ ∈ Cε/2}
)

=
∑

m,n∈Z

Pα(nε + iL,mε + iL′ ∈ Cε/2)

�
∑

m,n∈Z

ε4αU [(m − n)ε + i(L′ − L)]αU(nε + iL)α

� ε4α−2
∫

R

U(x + i(L′ − L))α dx

∫

R

U(x + iL)α dx

� ε4α−2

L2α−1(L′ − L)2α−1
.

We use the same transition from sum to integral as in the one-point bound. Proposition 1
now completes the proof. �

We show that C and D are almost surely empty for α ≥ 1. For α < 1, the Hausdorff
dimension is strictly positive and the set is non empty.

Proof (Proof of Theorem 1, part (5)) For α = 1, recall that the imaginary part of a Brownian
excursion is a Bessel(3) process, and a bridge height for the hull necessarily corresponds to
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a point of increase for the Bessel(3) process. However, it is well known that Bessel(3) has
no point of increase since, for example, a Bessel(3) process reversed from its last passage
time of a level has the same law as a Brownian motion up to its first hitting time of zero, and
Brownian motion is known to have no points of increase (see [15] for details of both facts).

For α > 1 consider the rectangle R = [−1,1] × [1/2,1]. Cover it with 22n squares each
of side length 2−n, and let {Si}1≤i≤22n be the boxes and zi be their centers. Then, by Propo-
sition 2, the expected number of squares containing a bridge point decays exponentially fast
since

Eα

[
22n∑

i=1

1{C ∩ Si �= ∅}
]

�
22n∑

i=1

Pα(I (zi,2−n) ∩ K �= ∅)

�
22n∑

i=1

U(zi)(2
−n)2α

= 2(2−2α)n2−2n

22n∑

i=1

U(zi)

≤ C2(2−2α)n,

for some constant C > 0. The last inequality is a simple consequence of the fact that U is
Riemann integrable and hence

2−2n

22n∑

i=1

U(zi) →
∫

R

U(z) dA(z) < ∞,

where dA(z) is two-dimensional Lebesgue measure. The Borel–Cantelli lemma then proves
that R almost surely contains no bridge points. By scale invariance any scaled version of R

also contains no bridge points. Translates of R in the horizontal direction also contain no
bridge points, since clearly the expected number of bridge points in translates of R decreases
as the rectangle is moved away from the imaginary axis. Finally, since the entire half-plane
can be covered with countably many scaled and translated versions of R, the entire plane
must almost surely be free of bridge points. �

We end this section with the proof of part (2) of Theorem 1. The lack of isolated points
in C and D is also a consequence of the renewal property of restriction hulls at bridge points,
so we defer the proof of this fact until the end of Sect. 4.

Proof (Proof of Theorem 1, part (2)) We prove the result for D; the proof for C is similar.
To prove that D is closed, suppose that L is a limit point of D. Without loss of generality we
may assume that the limiting sequence of bridge heights Ln that converges to L is strictly
increasing. If t is the bridge time corresponding to L, then the restriction hull after time t

must reside in the domain Im z ≥ L (since each Ln is a bridge height). Then L is not in D

if and only if the future hull touches the line Im z = L but does not cross it, which is clearly
an event of probability zero. Indeed, for two points z and w on the same horizontal line let
us define A(z, εz,w, εw) to be the event that the hull goes through the balls B(z, εz) and
B(w, εw) while avoiding I (z, εz) ∩ I (w, εw). The estimates of Proposition 3 can be used
to show that the probability of A(z, εz,w, εw) is of order ε2α

z ε2α
w , which easily implies the

result since α > 1/2. �
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4 Renewal at Bridge Lines

In this section we show that the restriction hulls renew themselves at bridge heights. Most
of the section is technical, so first we would like to give the intuition behind the renewal
property. It is almost entirely a consequence of restriction. Suppose that K is a restriction
hull with the law Pα . Given Ft , the Domain Markov property (4) says that the future hull
has the restriction law corresponding to the domain (H\γ [0, t], γ (t),∞). But if we also
know that t is a bridge time, then the future hull is separated from the past by the bridge
line that the hull is currently at. The future hull is therefore conditioned not to go below this
bridge line, and this conditioning is, by the restriction property, “equivalent” to sampling
the future hull from the restriction measure corresponding to the half plane above the bridge
line. Shifting the bridge point back to the origin, this means that the shifted future hull θtK

also obeys the law Pα and is independent of Ft .
There are two main technical obstacles to this intuition. The first is that the event that t

is a bridge time for K is not measurable with respect to Ft , since the set of bridge times is
a function of the entire hull. To address this problem and still have a meaningful notion of
renewal, we simply expand our filtration to a larger one Gt that tells us which bridge heights
of Kt are also bridge heights of K . The second and more problematic technicality is that t

being a bridge time is an event of measure zero, and so conditioning on it requires some
care. Theorem 3 deals with this latter problem by showing that the restriction hulls obey
a certain Domain Markov property with respect to Gt , and from this concludes that they
refresh themselves at Gt -stopping times τ such that Pα(τ ∈ G) = 1 (recall that G is the set
of bridge times).

We make the following definitions:

Definition 4 For t ≥ 0, let Dt be the set of bridge heights of Kt . Note that Dt is Ft -
measurable and D∞ = D. Observe that Dt ∩ D is the set of bridge heights of Kt that are
also bridge heights of K , and Dt\D is the set of bridge heights of Kt that are not bridge
heights of K . We also define

Lt := supDt ∩ D, L′
t := infDt\D.

Note that neither of these quantities, nor Dt ∩ D or Dt\D, are Ft -measurable. However,
they are measurable with respect to the enlarged filtration

Gt := σ(Ks,Ds ∩ D;0 ≤ s ≤ t).

Clearly Ft ⊂ Gt , and in this larger filtration the bridge lines (and points, and times) of K that
belong to Kt are measurable objects.

Notice that Dt ∩D is almost surely closed, and therefore Lt is actually a maximum rather
than a supremum (i.e. Lt ∈ Dt ∩ D). Hence Lt is the largest bridge height of Kt that is also
a bridge height of K . Clearly Lt ≤ L′

t . The next result follows easily from these definitions.

Proposition 4 The σ -algebra Gt is generated by Kt and Lt , i.e.

Gt = σ(Ft ,Lt ).

Proof Clearly σ(Ft ,Lt ) ⊂ Gt , since Lt is determined by Dt\D. For the other direction, it
is clear that Dt ∩ D = {L ∈ Dt : L ≤ Lt }. Hence Dt ∩ D is determined by both Dt (which
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is itself determined by Kt ) and Lt . This is sufficient because for s < t we have Ds ∩ D ⊂
Dt ∩ D, and hence Ds ∩ D is the intersection of Ds , which is Fs -measurable, and Dt ∩ D,
which we have just shown is σ(Ft ,Lt )-measurable. �

Proposition 5 For a fixed t > 0, Lt < L′
t with probability one.

Proof First observe that t is almost surely not a bridge time. It is easy to see that the distance
between γ [t,∞) and the last bridge line Im(z) = Lt is strictly positive (for instance, there
must exist another bridge height higher than Lt , and between, it is a continuous compact
curve). But a bridge height for γ [0, t) that is not a bridge height for the whole curve must
be greater than inf Im(γ [t,∞)). We deduce that L′

t is strictly greater than Lt . �

Definition 5 Given a subset K of C, define J (K) := inf{Im z : z ∈ K}.

With this definition in hand we state the paper’s main technical theorem.

Theorem 3 Suppose K = (γ, L) obeys the law Pα , and let τ be a Gt -stopping time. On the
event that τ is a bridge time the Gτ -conditional law of θτK is simply the law of a restriction
hull in H. If τ is not a bridge time then the conditional law of ΛτK , given Gτ , is the same
as the law of a restriction hull K ′ in H\γ [0, τ ] whose distribution is the restriction measure
corresponding to the triple (H\γ [0, τ ], γ (τ ),∞), but further conditioned on the event Lτ <

J(K ′) ≤ L′
τ .

Remark 2 Note that if τ is a bridge time then Lτ = Imγ (τ) and Lτ ′ = ∞. In this situation
the notation Lτ < J(K ′) < Lτ ′ can be interpreted as meaning that the future hull lies strictly
above the bridge line, which is an event of measure zero. To fully emphasize this very
important point we have handled this case with a separate statement at the beginning of the
theorem.

Theorem 3 should be seen as the extension of the Domain Markov property (4) to the
enlarged filtration Gt . In words, it simply says that the extra information in Gτ forces the
future restriction hull to go below the horizontal line y = L′

τ but stay above the horizontal
line y = Lτ . This extra conditioning stops L′

τ from being a bridge height for K but preserves
Lτ as a bridge height. A detailed proof of the theorem follows. It uses a standard procedure,
which we modified from [17], to bootstrap from the easy case of τ being a deterministic
time to the general case that τ is a stopping time.

Proof To simplify notation, we will write

P
t
α := P

(H\γ [0,t],γ (t),∞)
α ( · |Lt < J(K ′) ≤ L′

t )

throughout this proof. The goal of the proof is to show that the Gτ -conditional law of ΛτK

is P
τ
α .

Consider first the case that τ is a deterministic time t . Recall that conditioning on Gt is the
same as conditioning on Ft and Lt , by Proposition 4. Conditional on Ft , the Domain Markov
property (4) says that ΛtK has the restriction law for the triple (H\γ [0, t], γ (t),∞). Con-
ditioning again on Lt forces the future hull to stay above y = Lt but to go below y = L′

t ,
and since Lt < L′

t with positive probability this conditioning is well-defined. Hence the law
conditioned on Gt is exactly P

t
α .
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Another way of stating the above is as follows: let X be a bounded, continuous2 function
on hulls. Then

Eα[X(ΛtK)|Gt ] = Et
α[X], (7)

where Eα and Et
α denote expectations with respect to Pα and P

t
α , respectively. To finish the

proof we need to extend (7) to Gt -stopping times instead of just fixed times. First suppose
that τ only takes values in some countable set T . Then

Eα[X(ΛτK)|Gτ ] =
∑

t∈T

Eα[X(ΛτK)1{τ = t}|Gτ ]

=
∑

t∈T

Eα[X(ΛtK)1{τ = t}|Gt ]

=
∑

t∈T

1{τ = t}Eα[X(ΛtK)|Gt ]

=
∑

t∈T

1{τ = t}Et
α[X]

= Eτ
α[X].

From this we can bootstrap up to the case of general τ . Let τn be the smallest element of
2−n

N that is greater than or equal to τ . Then the last argument applies to τn, so that

Eα[X(ΛτnK)|Gτn ] = Eτn
α [X]. (8)

However, since τn is determined at time τ (i.e. τn is Gτ -measurable),

Eα[X(ΛτnK)|Gτn ] = Eα[X(ΛτnK)|Gτ ].
Since ΛτnK → ΛτK as n → ∞, and X is bounded and continuous, it follows that the left
hand side of (8) converges to

Eα[X(ΛτK)|Gτ ].
Hence, if we can show that Eτn

α [X] converges to Eτ
α[X] then we are done. Since X is

bounded and continuous, this is equivalent to showing that almost surely the law P
τn
α con-

verges weakly to P
τ
α , which we prove in the next lemma. �

Lemma 6 Let τ be a Gt -stopping time and τn be the smallest element of 2−n
N that is greater

than or equal to τ . Then P
τn
α converges weakly to P

τ
α with probability one, where we define

P
τ
α(·) := Pα(θτ ·) in the case that τ is a bridge time.

Proof Throughout this proof we will let Ht := (H + iLt )\γ [0, t].
As shown in [8, Lemma 3.2], a probability measure on unbounded hulls in the plane is

uniquely determined by the collection of probabilities

P(K ∩ A = ∅)

2The topology we consider is close to the Caratheodory topology and has been defined in [8, Lemma 3.5].
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that is indexed by a sufficiently large class of hulls A. Hence it is enough to show that

P
τn
α (K ′ ∩ A = ∅) → P

τ
α(K

′ ∩ A = ∅) (9)

for all hulls A in this class, with probability one. In our case, it is sufficient to prove that
for each fixed restriction hull in H, the convergence (9) holds for all hulls A in Hτ that are
a positive distance from γ (τ). Note that since τn ↓ τ and γ is continuous, for sufficiently
large n one must have that A is at positive distance from γ (τn) also. Hence the probabilities
on both sides are well defined. We prove (9) in the two distinct cases that τ is and is not a
bridge time.

CASE 1: τ IS NOT A BRIDGE TIME

First observe that in the definition of P
t
α , the conditioning J (K ′) > Lt forces the hull K ′

to avoid the region {Im z ≤ Lt }, and by the restriction property this can equally be achieved
by sampling K ′ from the restriction measure corresponding to the triple (Ht , γ (t),∞). Thus
we have the relation

P
(H\γ [0,t],γ (t),∞)
α ( · |Lt < J(K ′) ≤ L′

t ) = P
(Ht ,γ (t),∞)
α ( · |J (K ′) ≤ L′

t ).

Let gt be the conformal map from Ht onto H such that gt (γ (t)) = 0 and gt (z) ∼ z as z → ∞.
Let Rt := {z ∈ Ht : Im z ≤ L′

t }. Then

P
t
α(·) = P

(Ht ,γ (t),∞)
α (· |K ′ ∩ Rt �= ∅).

The first key observation is that for all n sufficiently large we have that Lτn = Lτ . This
equality is clear since G is closed, and hence τn must belong to the same connected compo-
nent of Gc that τ belongs to, for n sufficiently large. For these n we have Lτn = Lτ . For L′

τ

there are two distinct possibilities, which we now treat separately.
First note that necessarily L′

τ < ∞. Indeed, the maximum of the imaginary part of ImKτ

is always an element of Dτ , and since τ is not a bridge time this maximum cannot be in D.
So first consider the case that L′

τ < Imγ (τ). By formula (5), we have that

P
t
α(K

′ ∩ A = ∅) = P
(Ht ,γ (t),∞)
α (K ′ ∩ A = ∅,K ′ ∩ Rt �= ∅)

P
(Ht ,γ (t),∞)
α (K ′ ∩ Rt �= ∅)

= φ′
At

(0)α − φ′
At ∪St

(0)α

1 − φ′
St

(0)α
, (10)

where At = gt (A) and St = gt (Rt ) (this is justified since neither A nor Rτ contains γ (τ)).
Equation (10) shows that it is sufficient to prove

φ′
Aτn

(0) → φ′
Aτ

(0), φ′
Aτn∪Sτn

(0) → φ′
Aτ ∪Sτ

(0), φ′
Sτn

(0) → φ′
Sτ

(0). (11)

For n large enough, L′
τn

= L′
τ since for any neighborhood of Imγ (τ) there is an n suffi-

ciently large such that Dτn\Dτ is contained within this neighborhood. Since L′
τ < Imγ (τ),

by making the neighborhood sufficiently small we get that Dτn\D and Dτ\D must have
the same infimum; that is L′

τn
= L′

τ . Hence, Aτn and Sτn are only decreasing as γ [0, τn] de-
creases, and again since γ [0, τn] is a simple curve that shrinks to γ [0, τ ] it follows that gτn

converges uniformly to gτ on all subcompacts of Hτ , from which the convergences of (11)
follow (by Cauchy’s derivative formula and the Schwarz reflection principle, see [8]).
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The second possibility is to have L′
τ = Imγ (τ). On the one hand, the conditioning on K ′

going below Im(γ (τ )) is trivial so that P
τ
α = P

(Hτ ,γ (τ ),∞)
α . On the other hand, L′

τn
is greater

than L′
τ so that one can strengthen the conditioning of P

τn
α by requiring that the future hull

goes below L′
τ . Since γ is a simple curve shrinking to 0, one again has that gτn converges

uniformly to gτ on all subcompacts of Hτ , which proves that the conditioning becomes
trivial.

CASE 2: τ IS A BRIDGE TIME

In this case note that A is a hull in the domain H+ i Imγ (τ) = H+ iLτ ; hence it is simply
a translate of a hull in H. Moreover gτ is simply the shift map z → z − γ (τ), from which
it follows that Aτ = A − γ (τ) and Sτ = H. Since P

τ
α(·) = Pα(θτ ·), proving (9) amounts to

showing that

P
τn
α (K ′ ∩ A = ∅) → φ′

Aτ
(0).

We use (10) to rewrite the left hand side. Define Ut = φAt (St ∩ Ac
t ) so that

φAt ∪St = φUt ◦ φAt ,

from which it follows that

φ′
At ∪St

(0) = φ′
Ut

(0)φ′
At

(0).

Therefore

P
τn
α (K ′ ∩ A = ∅) = φ′

Aτn
(0)α

1 − φ′
Uτn

(0)α

1 − φ′
Sτn

(0)α
.

The convergence of φ′
Aτn

(0) to φ′
Aτ

(0) is simple since it only involves the map gτn . Note
that Lτ ≤ Lτn ≤ Imγ (τn), so that the domains Hτn converge to Hτ , and since γ is a simple
curve it once again follows that gτn converges uniformly to gτ on all subcompacts of Aτ . As
before, this implies the convergence of φ′

Aτn
(0) to φ′

Aτ
(0).

It remains to be shown that, as n → ∞,

1 − φ′
Uτn

(0)α

1 − φ′
Sτn

(0)α
= Pα(K

′′ ∩ Uτn �= ∅)

Pα(K ′′ ∩ Sτn �= ∅)
→ 1.

Observe that

Pα(K ∩ Uτn �= ∅) = Pα(K ∩ φAτn
(Sτn ∩ Ac

τn
) �= ∅)

= P
(H\Aτn ,0,∞)
α (K ∩ Sτn �= ∅)

∼ P
(H\Aτ ,0,∞)
α (K ∩ Sτn �= ∅).

The last relation follows since gτn converges uniformly to gτ on all subcompacts of Hτn , to
which A eventually belongs, so that Aτn converges to Aτ . Next recall that Sτn = gτn(Rτn),
and

0 < sup ImRτn ≤ L′
τn

− Imγ (τ),

with the right hand side going to zero as n → ∞. Since the distance of Aτ from zero is
positive, for n sufficiently large the probability that a restriction hull intersects Sτn is of the
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order of sup ImRτn and dominated by hulls that intersect Sτn near zero. Since the set Sτn is
the same near zero in both H and H\Aτ , the ratio

P
(H\Aτ ,0,∞)
α (K ∩ Sτn �= ∅)

Pα(K ∩ Sτn �= ∅)

tends to 1. �

Remark 3 Theorem 3 is most useful when τ is a bridge time, meaning it almost surely
takes values in G. In that case γ (τ) is a bridge point for K , and the corresponding bridge
line separates the future hull from the past. Shifting the future hull back to the origin by
subtracting off γ (τ), we have the following:

Corollary 1 At Gt -stopping times τ that almost surely take values in G, the shifted future
hull θτK obeys the law Pα .

Corollary 1 will be the key element in proving that the restriction hulls can be decom-
posed into a Poisson Point Process, which is the subject of the next section. Before doing
that, we immediately apply the corollary to Theorem 1, part (2) by showing that C and D

almost surely have no isolated points.

Proof (Proof of Theorem 1, part (2)) We have already shown that C and D are closed, we
prove that C has no isolated points. Almost surely, zero is not isolated in C because of the
scale invariance and the fact that bridge points exist. For a rational number r , let τr be the
first bridge time after time r . Then by the previous corollary, we deduce that the law of
θτr K obeys the law Pα . Since γ (τr) shifts to zero under θτr , the previous remark shows that
γ (τr) is almost surely not isolated. From these facts we deduce that the event {γ (τr) is not
isolated in C for all rational r} has probability one. If a point γ (t) ∈ C were isolated then
there would have to be an interval of time around t which contains no other bridge times,
but since this interval contains a rational time we arrive at a contradiction. �

5 Local Time of the Decomposition

In this section we will show that there exists a natural local time on the bridge heights that
we use to decompose the restriction hulls into a Poisson Point Process of irreducible bridges.
All the results of this section derive from the theory of subordinators and regenerative sets,
which is well described in [3]. We briefly recall the definition of regenerative sets, which is
taken from [3, Chapter 2].

Definition 6 A random subset S of [0,∞) is a regenerative set with respect to a filtration Ft

if for every s ≥ 0, conditionally on Ms = inf{t > s : t ∈ S} < ∞, the shifted set (S − Ms) ∩
[0,∞) has the same law as S and is independent of FMs .

Using the results of Sects. 3 and 4, we can immediately prove:

Proposition 6 The set D of bridge heights is regenerative with respect to DL := σ(D ∩
[0,L]).
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Proof Consider L ≥ 0. Since D is closed, ML ∈ D almost surely. Then ML is a bridge
height, and the time τL at which the curve reaches this bridge height is a Gt -stopping time
taking values in G. By Corollary 1, the GτL -law of θτLK is the same as the original law of
K . Consequently, the GτL -law of D(θτLK) = D − ML is the same as the law of D. Since
DL ⊂ GτL this completes the proof. �

Proposition 6 proved that the set D is regenerative, and consequently by [3, Theorem 2.1]
it is the closure of the image of some subordinator (and the subordinator is unique up to a
linear change of its time scale). On the other hand, Theorem 1 showed that D is scale invari-
ant, and it is an easy step to deduce from this that the subordinator must be stable. Recall
that there is a one-parameter family of stable subordinators, indexed by the real numbers
between 0 and 1, and, as shown in [3, Chapter 5], the index of a stable subordinator is the
same as the Hausdorff dimension of its image. Hence we have the following:

Corollary 2 Under the law Pα , the set D is the closure of the image of a stable subordinator
(σλ, λ ≥ 0) of index 2 − 2α.

The parameter λ can be thought of as the local time corresponding to the subordinator.
Recall that the local time for σ is the function λ : [0,∞) → [0,∞) defined by λ(s) :=
inf{t ≥ 0 : σt > s}, and it is well known in the subordinator literature that λ is an increasing,
continuous function which increases only on D. This means that if we run the restriction
hulls on the λ time scale, then the hull grows only when it is crossing bridge lines. For λ ≥ 0
we define

τh := inf{t ≥ 0 : sup Im(Kt ) = h},
and

t (λ) := τσλ
.

Note that σλ is the bridge height at which λ units of local time are first accumulated, and
then t (λ) is the time, in the original parameterization of the restriction hull, at which the
local time first reaches λ. It follows that t (λ) is an increasing, right-continuous process for
which the closure of its image is precisely the set of bridge times G. Intervals of λ on which
the process t (λ) is flat correspond to times at which the restriction hull is between bridge
heights. Using the t (λ) time-scale, we are able to define a Poisson Point Process taking
values in the space of irreducible bridges rooted at the origin. Let δ be the curve which starts
and ends at zero in zero time (i.e. δ : {0} → {0}). For λ ≥ 0, define eλ by

eλ =
{

θt(λ−),t (λ)K, t (λ) > t(λ−)

δ, t (λ) = t (λ−).
(12)

From this we have the following:

Proposition 7 eλ is an (Ft (λ))λ≥0 Poisson Point Process on the space of irreducible bridges.

Proof Take a subset U of the set of irreducible bridges that doesn’t contain δ, and an interval
I := [λ1, λ2]. As in [15, Chapter XII], one needs to show that the number of times that eλ

belongs to U for λ ∈ I is independent of Ft (λ1) and has the same law as the number of times
that eλ belongs to U for λ ∈ [0, λ2 − λ1]. But this is essentially a property of Corollary 1. �
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We denote by να the intensity measure of the Poisson Point Process eλ, and we call it the
continuum irreducible bridge measure. It conveniently encodes all the behavior of con-
tinuum irreducible bridges. For a set of irreducible bridges E, να(E) is simply the expected
number of elements of E that occur in e[0,1], which may or may not be finite. For instance,
if EL is the set of irreducible bridges with height greater than L, then a simple consequence
of Corollary 2 is that να(EL) = cαL

2α−2 for some fixed constant cα , and furthermore,

PL
α (·) := να(· ∩ EL)

να(EL)
(13)

is exactly the law of the first irreducible bridge with height greater than L. To make the
analogy with other well-known decompositions of stochastic processes, να is the equiva-
lent of Itô’s measure on 1-dimensional Brownian excursions, or Bálint Virág’s measure on
2-dimensional Brownian Beads. Compared to half-plane SAWs, να is the analogue of the
measure P(ω) = β−|ω| on SAW irreducible bridges, although we point out that P is a proba-
bility measure (by Kesten’s relation), whereas να is infinite but σ -finite.

In the case of half-plane SAWs, the measure on paths is realized by concatenating to-
gether an i.i.d. sequence of irreducible bridges, each distributed according to P, and in the
continuum a similar statement holds. If (eλ)λ≥0 is a Poisson Point Process of irreducible
bridges with intensity measure να , then the concatenation

K =
⊕

λ≥0

eλ

has the law of an index α restriction hull. Note, however, that we are not attempting to show
that the irreducible bridges can be concatenated together in such a way as to reconstruct
the sequence of growing hulls (Kt )t≥0, even though this should be possible with enough
care. Recall though that the time parameterization we are using for the restriction hulls is
completely artificial to begin with, and therefore attempting to reconstruct it would mostly
be an uninteresting and unuseful exercise.

6 Open Questions

In this final section we present some open questions that were raised by our work.

Question 1 What other properties of the irreducible bridge measure να can be derived?

Our work has essentially determined only one main property of bridges: that the distrib-
ution of their vertical height is the same as the jump distribution for a stable subordinator of
index 2 − 2α (up to a multiplicative constant). Ultimately we hope that much more can be
said about irreducible bridges than this. It may be naturally difficult to say anything more,
since even in the case of half-plane SAWs there is not much known about irreducible bridges
(although in the “off-critical” case there are some results, see [14, Chapter 4]). For other two-
dimensional decompositions, notably Virág’s Brownian Beads, it appears similarly difficult
to say anything about the bead measure.

Question 2 Is there a constructive way of building irreducible bridges?



Bridge Decomposition of Restriction Measures 491

In the case of SLE(8/3), for example, is there a driving term for the Loewner equation
that outputs irreducible bridges (perhaps with at least some specified vertical height)? And
for general restriction measures with α < 1, can some driving term for the Loewner equation
be combined with the Brownian loop soup to produce irreducible bridges for restriction
hulls?

Question 3 Is there a natural “length” that can be put on irreducible bridges?

For half-plane SAWs the length of the walk is simply the number of steps in it, and many
results on SAWs are expressed in terms of this length. We expect that there is some way of
defining a similar natural length on irreducible bridges, and that this length is somehow the
scaling limit of the length for SAWs. However, because the irreducible bridges are fractal
objects it is not an easy matter to define a non-trivial length on them. In the case of SLE(8/3)

specifically, this question is closely related to the problem of the “natural time parameteri-
zation” for SLE, which has recently been considered by Lawler and Sheffield [12]. The key
idea of their time parameterization is to build a length measure on the curve (that also has
some other desirable properties), and then reparameterize in such a way that the length of
the curve at time t is t , as with the SAWs. Their length measure should also be a natural
length measure for irreducible bridges.

Question 4 Is there some sort of continuous analogue of Kesten’s relation?

This is closely related to the problem of the natural length on irreducible bridges de-
scribed above. Supposing that L(K) is the “natural length” of an irreducible bridge, and
making an analogy with (2), we might expect that

∫ ∞

0
β−lνα(L(K) ∈ dl)

is finite for β < μ but infinite for β > μ, for some universal μ, and then one can ask for the
behavior at this critical μ.

Question 5 Can the restriction hulls be time parameterized in such a way that the time
parameterization also refreshes itself at bridge points?

Presently we are only showing that the hulls refresh themselves as sets and not as time
parameterized objects. But it is entirely plausible that there is some time parameterization
which refreshes itself at bridge points along with the geometrical objects, especially con-
sidering that the counting parameterization for half-plane SAWs has this property (at each
bridge point, one simply starts counting off the number of steps anew). It is possible that the
natural time parameterization of Lawler and Sheffield will have this property for SLE(8/3)

but it is not immediately clear that this will be the case, since their time parameterization
has no way of seeing that it is currently at a bridge point and therefore is unlikely to refresh
at such bridge times.

Question 6 Can some element of the bridge decomposition be used to prove the existence
of, or at least heuristically deduce, critical exponents for half-plane SAWs or SAW bridges?

For example, it is conjectured that the number of N -step SAW bridges grows asymp-
totically like N−βuN as N → ∞, for the same μ as in (1) and some unknown constant
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β . Recently, Neal Madras has privately communicated to us his conjecture that β = 7/16,
although this quantity was likely known beforehand in the physics literature. He uses two
different methods to derive this value, the first being based purely on some heuristics for
half-plane SAWs, and the other making use of the relation (13) and the conjecture that the
scaling limit of half-plane SAWs is SLE(8/3). Being able to answer further questions of this
type would be extremely helpful for studying half-plane SAWs.

Question 7 Do bridge heights and lines exist for SLE(κ) for values of κ different from 8/3.
If so, what is the Hausdorff dimension of C and D and how does it depend on κ?

Currently we only know that at κ = 0 and κ = 8/3, the Hausdorff dimensions of C and D

are 1 and 3/4, respectively (the κ = 0 result is clear from the fact that the corresponding
SLE curve is a vertical line). We conjecture that the Hausdorff dimensions of C and D are
always the same, and they are a strictly decreasing, continuous function of κ . When κ = 4
the Hausdorff dimension must certainly be zero since the SLE(4) curve comes arbitrarily
close to the real line, but we do not know if this is the smallest κ for which the dimension is
zero. We have no conjecture as to what that κ might be, other than it is somewhere between
8/3 and 4.

We should briefly mention that, as a corollary of Theorem 1, we do have lower bounds
on the Hausdorff dimension of C and D for 2 ≤ κ ≤ 8/3. Since attaching loops to an SLE
curve can only reduce the number of bridge points that the SLE curve has, we know

Proposition 8 Let C and D be the set of bridge points and heights for an SLE(κ) curve, with
2 ≤ κ ≤ 8/3. Then the Hausdorff dimensions of C and D are both almost surely constant,
with dimH C ≥ 3 − 6

κ
.

This lower bound is probably far from sharp, since it is increasing with κ rather than
decreasing. To prove that the Hausdorff dimensions of C and D are almost surely constant,
Theorem 1 part (3) can be used without modification.
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